Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;15(3):311-5.
doi: 10.1038/ng0397-311.

A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes

Affiliations

A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes

D I Våge et al. Nat Genet. 1997 Mar.

Abstract

Agouti and extension are two genes that control the production of yellow-red (phaeomelanin) and brown-black (eumelanin) pigments in the mammalian coat. Extension encodes the melanocyte-stimulating hormone receptor (MC1R) while agouti encodes a peptide antagonist of the receptor. In the mouse, extension is epistatic to agouti, hence dominant mutants of the MC1R encoding constitutively active receptors are not inhibited by the agouti antagonist, and animals with dominant alleles of both loci remain darkly pigmented. In the fox the proposed extension locus is not epistatic to the agouti locus. We have cloned and characterized the MC1R and the agouti gene in coat colour variants of the fox (Vulpes vulpes). A constitutively activating C125R mutation in the MC1R was found specifically in darkly pigmented animals carrying the Alaska Silver allele (EA). A deletion in the first coding exon of the agouti gene was found associated with the proposed recessive allele of agouti in the darkly pigmented Standard Silver fox (aa). Thus, as in the mouse, dark pigmentation can be caused by a constitutively active MC1R, or homozygous recessive status at the agouti locus. Our results, demonstrating the presence of dominant extension alleles in foxes with significant red coat colouration, suggest the ability of the fox agouti protein to counteract the signalling activity of a constitutively active fox MC1R.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources