Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;51(3):491-8.

Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels

Affiliations
  • PMID: 9058605

Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels

M C Sanguinetti et al. Mol Pharmacol. 1997 Mar.

Abstract

Toxins isolated from scorpion, snake, and spider venoms are valuable tools to probe the physiologic function and structure of ion channels. In this study, we have isolated three new toxins (heteropodatoxins) from the venom of a spider, Heteropoda venatoria. These toxins are structurally similar peptides of 29 to 32 amino acids and share sequence homology with hanatoxins isolated from the venom of a Chilean tarantula. The heteropodatoxins prolonged the action-potential duration of isolated rat ventricular myocytes, suggesting that the peptides block K+ currents. The effect of toxins on cardiac K+ currents were studied using voltage clamp techniques. The toxins blocked the transient outward K+ current but not other K+ currents in isolated rat cardiac myocytes. The mechanism of block was studied further using Kv4.2, a cloned channel believed to underlie transient outward K+ current in rat myocytes. The toxins blocked Kv4.2 current expressed in Xenopus laevis oocytes in a voltage-dependent manner, with less block at more positive potentials. In addition, the toxins slowed the time course of current activation and inactivation and shifted the voltage dependence of current inactivation to more positive potentials. The heteropodatoxins represent new pharmacologic probes to study the role of Kv4.2 channels in cardiac and neural tissue.

PubMed Disclaimer

LinkOut - more resources