Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996:101:33-43.

Are all beta-lactams created equal?

Affiliations
  • PMID: 9060050
Review

Are all beta-lactams created equal?

D M Livermore. Scand J Infect Dis Suppl. 1996.

Abstract

beta-Lactams are the largest antibiotic family, but are readily compromised by resistance. The result has been a cat-and-mouse game between chemists and bacteria, with the compounds repeatedly modified to overcome emergent resistance. With penicillins, it is possible to obtain spectrum, or beta-lactamase stability, but difficult to combine both. In general, it is better to protect a labile penicillin with an inhibitor, though this strategy is limited by the absence of good inhibitors of AmpC beta-lactamases. Combining spectrum and beta-lactamase stability proved easier with cephalosporins, but it is difficult to cover enterobacteria, anaerobes, non-fermenters and staphylococci with a single compound, and enterococci are consistently resistant. Carbapenems allow the broadest spectrum of available beta-lactams. Less equal or predictable than initial spectrum is how rapidly resistance emerges. This point is especially important pertinent to beta-lactamases; PBP changes compromise all beta-lactams. Spread of plasmidic beta-lactamases destroyed the utility of penicillin G against staphylococci and that of anti-gram-negative penicillins against enterobacteria. Resistance to 'beta-lactamase-stable' cephalosporins has recently spread in enterobacteria, mediated by hyperproduction of AmpC beta-lactamases and extended-spectrum TEM and SHV types. Carbapenems were launched shortly after 3rd-generation cephalosporins, but beta-lactamase-mediated resistance has emerged more slowly. Nevertheless, recent reports of zinc carbapenems in gram-negative bacteria from Japan are disturbing.

PubMed Disclaimer

MeSH terms