Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;82(3):786-90.
doi: 10.1210/jcem.82.3.3816.

Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors

Affiliations

Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors

H J Balks et al. J Clin Endocrinol Metab. 1997 Mar.

Abstract

The mechanisms involved in the rapid glucagon-like peptide-1 (GLP-1) release following glucose ingestion are poorly defined. Besides a direct intestinal stimulation of L cells, humoral and neuronal mechanisms have been discussed. We investigated the temporal pattern of GLP-1 release in five healthy men (aged 27.8 +/- 3.6 yr, body mass index, 23.4 +/- 1.2 kg/m2) after an overnight fast for 60 min under basal conditions and for 60 min after an oral glucose load (OGL; 100 g) in both the presence and absence of atropine (80 ng/kg min, iv). Blood was sampled every 2 min, and data were evaluated for the temporal pattern of GLP-1 secretion by several computer-assisted programs (deconvolution, Pulsar analysis, and Fourier transformation). With all methods a pulsatile pattern of plasma GLP-1 levels with a frequency of five to seven per h was detected; this remained unchanged in the different metabolic states and during atropine treatment. Glucose and GLP-1 plasma levels showed a parallel increase after OGL (OGL without atropine = control: 8.4 +/- 2.9 and 7.9 +/- 3.0 min, respectively). Atropine infusion delayed this increase significantly (16.8 +/- 8.07 and 17.4 +/- 6.61 min, respectively; P < 0.02). In contrast to plasma glucose concentrations (82.7 +/- 0.3% of control; P < 0.05), atropine infusion reduced the integrated GLP-1 pulse amplitude to 56.0 +/- 11.3% of the control levels (P < 0.05). In conclusion, GLP-1 is secreted in a pulsatile manner with a frequency comparable to that of pancreatic hormones. Mean GLP-1 plasma concentrations increase after OGL due to augmented GLP-1 pulse amplitudes but not frequency. The differential effect of atropine on glucose and GLP-1 plasma levels suggest a direct cholinergic muscarinic control of L cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources