Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;179(6):1857-66.
doi: 10.1128/jb.179.6.1857-1866.1997.

The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence

Affiliations

The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence

M C Sulavik et al. J Bacteriol. 1997 Mar.

Abstract

The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence played no role in marA-mediated multiple antibiotic resistance. Taken together, the data show that the S. typhimurium mar locus is structurally and functionally similar to marRABEc and that a lesion in marASt has no effect on S. typhimurium virulence for BALB/c mice.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Mol Biol. 1976 Jul 5;104(3):541-55 - PubMed
    1. Mol Microbiol. 1996 Aug;21(3):441-8 - PubMed
    1. Gene. 1977;2(2):95-113 - PubMed
    1. Infect Immun. 1982 Nov;38(2):476-86 - PubMed
    1. Antimicrob Agents Chemother. 1983 May;23(5):641-8 - PubMed

MeSH terms

Associated data