Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 15;99(6):1445-52.
doi: 10.1172/JCI119303.

Altered responses of human macrophages to lipopolysaccharide by hydroperoxy eicosatetraenoic acid, hydroxy eicosatetraenoic acid, and arachidonic acid. Inhibition of tumor necrosis factor production

Affiliations

Altered responses of human macrophages to lipopolysaccharide by hydroperoxy eicosatetraenoic acid, hydroxy eicosatetraenoic acid, and arachidonic acid. Inhibition of tumor necrosis factor production

J V Ferrante et al. J Clin Invest. .

Abstract

The regulation of allergic and autoimmune inflammatory reactions by polyunsaturated fatty acids and their metabolic products (eicosanoids) continues to be of major interest. Our data demonstrate that arachidonic acid 5,8,11,14-eicosatetraenoic acid (20:4n-6) and its hydroxylated derivatives 15(s)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) and 15(s)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) regulate agonist-induced tumor necrosis factor alpha (TNF) production, a cytokine that plays a role in inflammatory diseases. Although 20:4n-6 and 15-HETE caused a reduction in production of TNF in mononuclear leukocytes stimulated with phytohaemagglutinin, pokeweed mitogen, concanavalin A, and Staphylococcus aureus, 15-HPETE was far more active. 15-HPETE was also found to dramatically depress the ability of bacterial lipopolysaccharide to induce TNF production in monocytes and the monocytic cell line Mono Mac 6. These fatty acids depressed the expression of TNF mRNA in Mono Mac 6 cells stimulated with LPS; 15-HPETE was fivefold more active than 20:4n-6 and 15-HETE. While 15-HPETE treatment neither affected LPS binding to Mono Mac 6 cells nor caused a decrease in CD14 expression, the fatty acid significantly reduced the LPS-induced translocation of PKC (translocation of alpha, betaI, betaII, and epsilon isozymes), suggesting that 15-HPETE acts by abrogating the early signal transduction events. The findings identify another molecule that could form the basis for development of antiinflammatory pharmaceuticals.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1981 Dec 25;256(24):12640-3 - PubMed
    1. Atherosclerosis. 1995 Jul;116(1):125-33 - PubMed
    1. Cell Immunol. 1983 Jul 15;79(2):240-52 - PubMed
    1. J Clin Invest. 1985 May;75(5):1740-3 - PubMed
    1. J Neurochem. 1985 Jul;45(1):168-72 - PubMed

Publication types

MeSH terms