Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;1(2):103-16.
doi: 10.1016/S1359-0278(96)00019-3.

Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model

Affiliations

Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model

L A Mirny et al. Fold Des. 1996.

Abstract

Background: The role of intermediates in protein folding has been a matter of great controversy. Although it was widely believed that intermediates play a key role in minimizing the search problem associated with the Levinthal paradox, experimental evidence has been accumulating that small proteins fold fast without any detectable intermediates.

Results: We study the thermodynamics and kinetics of folding using a simple lattice model. Two folding sequences obtained by the design procedure exhibit different folding scenarios. The first sequence folds fast to the native state and does not exhibit any populated intermediates during folding. In contrast, the second sequence folds much slower, often being trapped in misfolded low-energy conformations. However, a small fraction of folding molecules for the second sequence fold on a fast track avoiding misfolded traps. In equilibrium at the same temperature the second sequence has a highly populated intermediate with structure similar to that of the kinetics intermediate.

Conclusions: Our analysis suggests that intermediates may often destabilize native conformations and derail the folding process leading it to traps. Less-optimized sequences fold via parallel pathways involving misfolded intermediates. A better designed sequence is more stable in the native state and folds fast without intermediates in a two-state process.

PubMed Disclaimer

Publication types