In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ
- PMID: 9079911
- PMCID: PMC178962
- DOI: 10.1128/jb.179.7.2259-2266.1997
In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ
Abstract
The products of cooCTJ are involved in normal in vivo Ni insertion into the carbon monoxide dehydrogenase (CODH) of Rhodospirillum rubrum. Located on a 1.5-kb DNA segment immediately downstream of the CODH structural gene (cooS), two of the genes encode proteins that bear motifs reminiscent of other (urease and hydrogenase) Ni-insertion systems: a nucleoside triphosphate-binding motif near the N terminus of CooC and a run of 15 histidine residues regularly spaced over the last 30 amino acids of the C terminus of CooJ. A Gm(r)omega-linker cassette was developed to create both polar and nonpolar (60 bp) insertions in the cooCTJ region, and these, along with several deletions, were introduced into R. rubrum by homologous recombination. Analysis of the exogenous Ni levels required to sustain CO-dependent growth of the R. rubrum mutants demonstrated different phenotypes: whereas the wild-type strain and a mutant bearing a partial cooJ deletion (of the region encoding the histidine-rich segment) grew at 0.5 microM Ni supplementation, strains bearing Gm(r)omega-linker cassettes in cooT and cooJ required approximately 50-fold-higher Ni levels and all cooC insertion strains, bearing polar or nonpolar insertions, grew optimally at 550 microM Ni.
Similar articles
-
Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum.J Biol Chem. 2001 Oct 19;276(42):38602-9. doi: 10.1074/jbc.M104945200. Epub 2001 Aug 15. J Biol Chem. 2001. PMID: 11507093
-
Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system.J Bacteriol. 1992 Aug;174(16):5284-94. doi: 10.1128/jb.174.16.5284-5294.1992. J Bacteriol. 1992. PMID: 1644755 Free PMC article.
-
Ni(2+) transport and accumulation in Rhodospirillum rubrum.J Bacteriol. 1999 Aug;181(15):4554-60. doi: 10.1128/JB.181.15.4554-4560.1999. J Bacteriol. 1999. PMID: 10419953 Free PMC article.
-
Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases.J Biol Inorg Chem. 2018 Jun;23(4):613-620. doi: 10.1007/s00775-018-1541-0. Epub 2018 Feb 14. J Biol Inorg Chem. 2018. PMID: 29445873 Free PMC article. Review.
-
Nickel-binding proteins.Cell Mol Life Sci. 1999 Nov 15;56(7-8):604-25. doi: 10.1007/s000180050456. Cell Mol Life Sci. 1999. PMID: 11212309 Free PMC article. Review.
Cited by
-
Structure-function relationships of anaerobic gas-processing metalloenzymes.Nature. 2009 Aug 13;460(7257):814-22. doi: 10.1038/nature08299. Nature. 2009. PMID: 19675641 Review.
-
Functionally critical elements of CooA-related CO sensors.J Bacteriol. 2004 Mar;186(5):1320-9. doi: 10.1128/JB.186.5.1320-1329.2004. J Bacteriol. 2004. PMID: 14973040 Free PMC article.
-
Golgi-Localized OsFPN1 is Involved in Co and Ni Transport and Their Detoxification in Rice.Rice (N Y). 2022 Jul 11;15(1):36. doi: 10.1186/s12284-022-00583-3. Rice (N Y). 2022. PMID: 35817888 Free PMC article.
-
Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization.Front Microbiol. 2022 May 9;13:865168. doi: 10.3389/fmicb.2022.865168. eCollection 2022. Front Microbiol. 2022. PMID: 35615514 Free PMC article. Review.
-
Carboxydotrophic growth of Geobacter sulfurreducens.Appl Microbiol Biotechnol. 2016 Jan;100(2):997-1007. doi: 10.1007/s00253-015-7033-z. Epub 2015 Oct 19. Appl Microbiol Biotechnol. 2016. PMID: 26481622 Free PMC article.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases