Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 14;40(6):920-9.
doi: 10.1021/jm960596u.

HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching

Affiliations

HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching

M C Nicklaus et al. J Med Chem. .

Abstract

Starting from a known inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN); caffeic acid phenethyl ester (CAPE), a putative three-point pharmacophore for binding of inhibitors to IN was derived. This pharmacophore was used to search the National Cancer Institute three-dimensional (3D) structural database. Out of the open, nonproprietary part of this database, comprising approximately 200000 compounds, 267 structures were found to match the pharmacophore in at least one conformation, and 60 of those were tested in an in vitro assay against HIV-1 IN. Out of these, 19 were found to inhibit both the 3'-processing and strand transfer of IN at micromolar concentrations. In order to test the validity of this pharmacophore, a small 3D database of 152 published IN inhibitors was built. A search in this database yielded a statistically significant correlation of the presence of this pharmacophore and the potency of the compounds. An automated pharmacophore identification procedure performed on this set of compounds provided additional support for the importance of this pharmacophore for binding of inhibitors to IN and hinted at a possible second pharmacophore. The role of aromatic moieties in the binding of ligands to HIV-1 IN through interactions with divalent metal cations, which are known to be necessary for activity of the enzyme, was explored in ab initio calculations.

PubMed Disclaimer

MeSH terms

LinkOut - more resources