Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997;18(2):111-5.
doi: 10.1002/(sici)1521-186x(1997)18:2<111::aid-bem3>3.0.co;2-5.

Do electromagnetic fields interact directly with DNA?

Affiliations
Review

Do electromagnetic fields interact directly with DNA?

M Blank et al. Bioelectromagnetics. 1997.

Abstract

The mechanisms whereby electromagnetic (EM) fields stimulate changes in biosynthesis in cells are not known. It has has generally been assumed that EM fields first interact with cell membranes, but this pathway may not be only one. Interactions with membranes are well documented, but recent studies of EM signal transduction in the membrane Na,K-ATPase are best explained by direct interaction of electric and magnetic fields with mobile charges within the enzyme. Interaction with moving charges may be a mechanism that is operative in other biopolymers. Recent studies on DNA have shown that large electron flows are possible within the stacked base pairs of the double helix. Therefore, gene activation by magnetic fields could be due to direct interaction with moving electrons within DNA. Electric fields as well as magnetic fields stimulate transcription, and both fields could interact with DNA directly. The mechanism of EM field-stimulated transcription may be related to the process in striated muscles, where endogenous electrical activity induces the synthesis of new proteins.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources