Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Apr 2;89(7):480-7.
doi: 10.1093/jnci/89.7.480.

Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure

Affiliations
Review

Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure

R L Dedrick et al. J Natl Cancer Inst. .

Abstract

Both theory and clinical studies demonstrate that drug concentrations in the peritoneal cavity can greatly exceed concentrations in the plasma following intraperitoneal administration. This regional advantage has been associated with clinical activity, including surgically documented complete responses in ovarian cancer patients with persistent or recurrent disease following systemic therapy, and has produced a survival advantage in a recent phase III trial. Two pharmacokinetic problems appear to limit the effectiveness of intraperitoneal therapy: poor tumor penetration by the drug and incomplete irrigation of serosal surfaces by the drug-containing solution. We have examined these problems in the context of a very simple, spatially distributed model. If D is the diffusivity of the drug in a tissue adjacent to the peritoneal cavity and k is the rate constant for removal of the drug from the tissue by capillary blood, the model predicts that (for slowly reacting drugs) the characteristic penetration distance is (D/k)1/2 and the apparent permeability of the surface of a peritoneal structure is (Dk)1/2. The permeability-area product used in classical pharmacokinetic calculations for the peritoneal cavity as a whole is the sum of the products of the tissue-specific permeabilities and the relevant superficial surface areas. Since the model is mechanistic, it provides insight into the expected effect of procedures such as pharmacologic manipulation or physical mixing. We observe that large changes in tissue penetration may be difficult to achieve but that we have very little information on the transport characteristics within tumors in this setting or their response to vasoactive drugs. Enhanced mixing is likely to offer significant potential for improved therapy; however, procedures easily applicable to the clinical setting have not been adequately investigated and should be given high priority. Clinical studies indicate that an increase in irrigated area may be achieved in many patients by individualizing the dialysate volume and consideration of patient position.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources