Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1997 Mar;5(1):2-11.

A neuro-control system for the knee joint position control with quadriceps stimulation

Affiliations
  • PMID: 9086380
Clinical Trial

A neuro-control system for the knee joint position control with quadriceps stimulation

G C Chang et al. IEEE Trans Rehabil Eng. 1997 Mar.

Abstract

A neuro-control system was designed to control the knee joint to move in accordance with the desired trajectory of movement through stimulation of quadriceps muscle. This control system consisted of a neural controller and a fixed parameter proportional-integral-derivative (PID) feedback controller, which was designated as a neuro-PID controller. A multilayer feedforward time-delay neural network was used and trained as an inverse model of the functional electrical stimulation (FES)-induced quadriceps-lower leg system for direct feedforward control. The training signals for neural network learning were obtained from experimentation using a low-pass filtered random sequence to reveal the plant characteristics. The Nguyen-Widrow method was used to initialize the neural connection weights. The conjugate gradient descent algorithm was then used to modify these connection weights so as to minimize the errors between the desired outputs and the network outputs. The knee joint angle was controlled with only small deviations along the desired trajectory with the aid of the neural controller. In addition, the PID feedback controller was utilized to compensate for the residual tracking errors caused by disturbances and modeling errors. This control strategy was evaluated on one able-bodied and one paraplegic subject. The neuro-PID controller showed promise as a position controller of knee joint angle with quadriceps stimulation.

PubMed Disclaimer

Publication types

LinkOut - more resources