Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 14;224(2):83-6.
doi: 10.1016/s0304-3940(97)13476-0.

Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion

Affiliations

Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion

K V Rao et al. Neurosci Lett. .

Abstract

Sparse-fur (spf) mice with a deficiency of hepatic ornithine transcarbamylase (OTC) are congenitally hyperammonemic, showing elevated cerebral ammonia and glutamine and depleted levels of energy metabolites. This mouse disorder is akin to the human OTC deficiency, in which neuronal loss and Alzheimer's type II astrocytosis is reported. Reduced cytochrome C oxidase (COX) activity is characteristic of neurodegeneration in Alzheimer's type disorders. We have studied the causal relationship between cerebral COX activity and energy depletion in spf mice. Our results indicate a progressive decrease in the COX activity in various brain regions in spf mice, up to 40 weeks of age, which severely effected the cerebral levels of various energy metabolites. A quantitative estimation of cerebral COX subunit I mRNA also showed a tendency to decrease in spf mice. Short-term acetyl L-carnitine (ALCAR) treatment restored these abnormalities. Our study points out that: (a) ammonia-induced alterations in the cerebral reducing equivalents could cause a decrease in COX activity and its mRNA expression, and (b) ALCAR administration could normalize the cerebral energy metabolism and induce COX mRNA expression and activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources