Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 28;267(2):368-81.
doi: 10.1006/jmbi.1996.0842.

Electrostatic effects in homeodomain-DNA interactions

Affiliations

Electrostatic effects in homeodomain-DNA interactions

F Fogolari et al. J Mol Biol. .

Abstract

We report here an investigation of the role of electrostatics in homeodomain-DNA interactions using techniques based around the use of the Poisson-Boltzmann equation. In the present case such a study is of particular interest, since in contrast to other proteins previously studied with this method, the homeodomain is a small, highly charged protein that forms extensive ion pairs upon binding DNA. We have investigated the salt dependence of the binding constant for specific association and for a variety of models for non-specific association. The results indicate that, in line with the models proposed by Manning and Record, the entropy of counterion release accounts for a significant fraction of the salt dependence of the binding free energy, though this is perhaps due to fortuitous cancellation of other contributing terms. The thermodynamic effects of a number of specific homeodomain mutants were also investigated, and partly rationalized in terms of favorable electrostatic interactions in the major goove of DNA. Investigation of the temperature-dependence of the free energy of association indicates that the electrostatic contributions become increasingly favorable as the temperature rises. For this particular system, however, there appears to be no significant electrostatic contribution to the delta(delta C(p)) of association. Finally, an analysis of the free energy of interaction when the homeodomain is moved ca one Debye length from the DNA suggests that pure electrostatic forces are able to steer the homeodomain into a partially correct orientation for binding to the DNA.

PubMed Disclaimer

Publication types

LinkOut - more resources