Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;25(4):958-63.
doi: 10.1002/hep.510250428.

Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat

Affiliations

Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat

A S Arora et al. Hepatology. 1997 Apr.

Abstract

Although ceramide signaling pathways have been implicated in cell death, neither their role in hepatocellular death nor the cellular mechanisms mediating ceramide-induced cell death are known. The mitochondrial membrane permeability transition (MMPT) has been proposed as a common final pathway in cell death. Thus the aims of our study were to determine if ceramides cause hepatocellular death by necrosis and not apoptosis as confirmed by morphology and the absence of internucleosomal DNA cleavage. Ceramide-mediated hepatocyte necrosis was acyl chain-length, concentration, and time-dependent. Ceramides induced cell necrosis was associated with adenosine triphosphate (ATP) depletion and mitochondrial depolarization suggesting that ceramides caused mitochondrial dysfunction. In isolated mitochondria, ceramides induced the cyclosporine A-sensitive MMPT in an acyl chain-length and concentration dependent manner. Ceramide toxicity was specific as the less potent dihydro form did not induce cell necrosis, significant ATP depletion, mitochondrial depolarization nor the MMPT. In conclusion, ceramide induced cell death is acyl-chain length dependent and mediated by the MMPT. These data show for the first time that ceramide acts as a mediator of hepatocyte necrosis by causing mitochondrial failure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources