Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 18;272(16):10522-8.
doi: 10.1074/jbc.272.16.10522.

Identification of the amino acid sequences responsible for high affinity activation of cGMP kinase Ialpha

Affiliations
Free article

Identification of the amino acid sequences responsible for high affinity activation of cGMP kinase Ialpha

P Ruth et al. J Biol Chem. .
Free article

Abstract

The cGMP-dependent protein kinases (cGK) Ialpha and Ibeta have identical cGMP binding sites and catalytic domains. However, differences in their first 100 amino acids result in 15-fold different activation constants for cGMP. We constructed chimeras to identify those amino acid sequences that contribute to the high affinity cGK Ialpha and low affinity cGK Ibeta phenotype. The cGK Ialpha/Ibeta chimeras contained permutations of six amino-terminal regions (S1-S6) including the leucine zipper (S2), the autoinhibitory domain (S4), and the hinge domain (S5, S6). The exchange of S2 along with S4 switched the phenotype from cGK Ialpha to cGK Ibeta and vice versa, suggesting that the domains with the highest homology between the two isozymes determine their affinity for cGMP. The high affinity cGK Ialpha phenotype was also obtained by a specific substitution within the hinge domain. Chimeras with the sequence of cGK Ialpha in S5 and cGK Ibeta in S6 were activated at up to 6-fold lower cGMP concentrations than cGK Ialpha. Based on the activation constants of all chimeras constructed, empirical weighting factors have been calculated that quantitatively describe the contribution of the individual amino-terminal domains S1-S6 to the high affinity cGK Ialpha phenotype.

PubMed Disclaimer

Publication types

Substances

Associated data

LinkOut - more resources