Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;82(4):1293-300.
doi: 10.1210/jcem.82.4.3859.

The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure

Affiliations

The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure

A Kennedy et al. J Clin Endocrinol Metab. 1997 Apr.

Abstract

Leptin is an adipocyte-derived hormone that interacts with a putative receptor(s) in the hypothalamus to regulate body weight. The relationship of leptin to metabolic abnormalities associated with obesity together with hormonal and substrate regulation of leptin have not been extensively studied. Therefore, 116 subjects (62 men and 54 women) with a wide range of body weight [body mass index (BMI), 17-54 kg/m2] were characterized on a metabolic ward with regard to body composition, glucose intolerance, insulin sensitivity, energy expenditure, substrate utilization, and blood pressure. Eighty-five of the subjects had normal glucose tolerance (50 men and 35 women), and 31 had noninsulin-dependent diabetes mellitus (12 men and 19 women). In both men and women, fasting leptin levels were highly correlated with BMI (r = 0.87 and r = 0.88, respectively) and percent body fat (r = 0.82 and r = 0.88, respectively; all P < 0.0001). However, men exhibited lower leptin levels at any given measure of obesity. Compared with those in men, leptin levels rose 3.4-fold more rapidly as a function of BMI in women [leptin = 1.815 (BMI)-31.103 in women; leptin = 0.534 (BMI)-8.437 in men] and 3.2 times more rapidly as a function of body fat [leptin = 1.293 (% body fat)-24.817 in women; leptin = 0.402 (% body fat)-3.087 in men]. Hyperleptinemia was associated with insulin resistance (r = -0.57; P < 0.0001) and high waist to hip ratio (r = 0.75; P < 0.0001) only in men. On the other hand, during the hyperinsulinemic euglycemic clamp studies, hyperinsulinemia acutely increased leptin concentrations (20%) only in women. There was no correlation noted between fasting leptin levels and either resting energy expenditure or insulin-induced thermogenesis in men or women (P = NS). In stepwise and multiple regression models with leptin as the dependent variable, noninsulin-dependent diabetes mellitus did not enter the equations at a statistically significant level. The data indicate that there are important gender-based differences in the regulation and action of leptin in humans. Serum leptin levels increase with progressive obesity in both men and women. However, for any given measure of obesity, leptin levels are higher in women than in men, consistent with a state of relative leptin resistance. These findings have important implications regarding differences in body composition in men and women. The observation that serum leptin is not related to energy expenditure rates suggests that leptin regulates body fat predominantly by altering eating behavior rather than calorigenesis.

PubMed Disclaimer

Publication types

LinkOut - more resources