Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;80(3):152-8.
doi: 10.1111/j.1600-0773.1997.tb00389.x.

Characterization of 1-hydroxypyrene as a novel marker substrate of 3-methylcholanthrene-inducible phenol UDP-glucuronosyltransferase(s)

Affiliations

Characterization of 1-hydroxypyrene as a novel marker substrate of 3-methylcholanthrene-inducible phenol UDP-glucuronosyltransferase(s)

L Luukkanen et al. Pharmacol Toxicol. 1997 Mar.

Abstract

Rats were treated with acetone, pyrazole, phenobarbital, 4,4'-methylenebis-(2-chloroaniline) (MOCA), 3-methylcholanthrene, creosote oil, or a mixture of polychlorinated biphenyls (Aroclor 1254) to study the inducibility and enzyme kinetics of UDP-glucuronosyltransferases towards 1-hydroxypyrene, which is a human metabolite and a urinary biomarker of exposure to pyrene. The rate of 1-hydroxypyrene glucuronidation was analyzed in rat liver microsomes by a fluorometric HPLC assay of the formed glucuronide. The apparent K(m) and Vmax values in untreated controls (K(m) = 0.27 mM; Vmax = 31 nmol/min./mg protein) did not differ markedly from those in rats treated with acetone, pyrazole or phenobarbital, whereas the significantly decreased K(m) and increased Vmax values of the rats treated with the carcinogenic chemicals, MOCA (0.11; 51), creosote (0.06; 137), 3-methylcholanthrene (0.07; 141) or the Aroclor-1254 polychlorinated biphenyl (PCB) mixture (0.08; 226), implicated major changes in the hepatic expression of UDP-glucuronosyltransferases. 1-Hydroxypyrene proved to be a high affinity substrate and a sensitive marker of the polycyclic aromatic hydrocarbon (PAH) metabolizing UDP-glucuronosyltransferase(s). Catalytically, the most efficient isoforms were induced in creosote, 3-methylcholanthrene and PCB-treated rats showing Vmax/K(m) ratios which were 22-27 times greater than in untreated controls. Our findings suggest the existence of a 3-methylcholanthrene type inducible and a functionally efficient low-K(m)/ high-Vmax form(s) of UDP-glucuronosyltransferase(s) that detoxify 1-hydroxypyrene and probably other polycyclic aromatic hydrocarbons as well.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources