Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:172:129-91.
doi: 10.1016/s0074-7696(08)62360-8.

Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials

Affiliations
Review

Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials

G Daculsi et al. Int Rev Cytol. 1997.

Abstract

Mineralization and crystal deposition are natural phenomena widely distributed in biological systems from protozoa to mammals. In mammals, normal and pathological calcifications are observed in bones, teeth, and soft tissues or cartilage. We review studies on the adaptive apatite crystal formation in enamel compared with those in other calcified tissues (e.g., dentin, bone, and fish enameloids) and in pathological calcifications, demonstrating the adaptation of these crystals (in terms of crystallinity and orientation) to specific tissues that vary in functions or vary in normal or diseased conditions. The roles of minor elements, such as carbonate, magnesium, fluoride, hydrogen phosphate, pyrophosphate, and strontium ions, on the formation and transformation of biologically relevant calcium phosphates are summarized. Another adaptative process of crystals in biology concerns the recent development of calcium phosphate ceramics and other related biomaterials for bone graft. Bone graft materials are available as alternatives to autogeneous bone for repair, substitution, or augmentation. This paper discusses the adaptive crystal formation in mineralized tissues induced by calcium phosphate and related bone graft biomaterials during bone repair.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources