Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;120(7):1367-75.
doi: 10.1038/sj.bjp.0701047.

Inhibitory effects of omega-3 polyunsaturated fatty acids on receptor-mediated non-selective cation currents in rat A7r5 vascular smooth muscle cells

Affiliations

Inhibitory effects of omega-3 polyunsaturated fatty acids on receptor-mediated non-selective cation currents in rat A7r5 vascular smooth muscle cells

M Asano et al. Br J Pharmacol. 1997 Apr.

Abstract

1. The effects of omega-3 polyunsaturated fatty acids on receptor-mediated non-selective cation current (Icat) and K+ current were investigated in aortic smooth muscle cells from foetal rat aorta (A7r5 cells). The whole-cell voltage clamp technique was employed. 2. With a K(+)-containing solution, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA, 30 microM) produced an outward current at a holding potential of -40 mV. This response was inhibited by tetraethylammonium (20 mM) or Cs+ in the patch pipette solution, and the reversal potential of the EPA-induced current followed the K+ equilibrium potential in a near Nernstian manner. 3. Under conditions with a Cs(+)-containing pipette solution, both vasopressin and endothelin-1 (100 nM) induced a long-lasting inward current at a holding potential of -60 mV. The reversal potential of these agonist-induced currents was about +0 mV, and was not significantly altered by the replacement of the extracellular or intracellular Cl+ concentration, suggesting that the induced current was a cation-selective current (Icat). 4. La3+ and Cd2+ (1 mM) completely abolished these agonist-induced Icat, but nifedipine (10 microM) failed to inhibit it significantly. 5. omega-3 polyunsaturated fatty acids (3-100 microM), EPA, DHA and docosapentaenoic acids (DPA), inhibited the agonist-induced Icat in a concentration-dependent manner. The potency of the inhibitory effect was EPA > DHA > DPA, and the half maximal inhibitory concentration (IC50) of EPA was about 7 microM. 6. Arachidonic and linoleic acids (10, 30 microM) showed a smaller inhibitory effect compared to omega-3 fatty acids. Also, oleic and stearic acids (30 microM) did not show a significant inhibitory effect on Icat. 7. A similar inhibitory action of EPA was observed when Icat was activated by intracellularly applied GTP gamma S in the absence of agonists, suggesting that the site of action of omega-3 fatty acids is not located on the receptor. 8. These results demonstrate that omega-3 polyunsaturated fatty acids can activate a K+ current and also effectively inhibit receptor-mediated non-selective cation currents in rat A7r5 vascular smooth muscle cells. Thus, the data suggest that omega-3 fatty acids may play an important role in the regulation of vascular tone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms