Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 15;99(8):1917-25.
doi: 10.1172/JCI119359.

Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism

Affiliations

Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism

M Bai et al. J Clin Invest. .

Abstract

Missense mutations have been identified in the coding region of the extracellular calcium-sensing receptor (CASR) gene and cause human autosomal dominant hypo- and hypercalcemic disorders. The functional effects of several of these mutations have been characterized in either Xenopus laevis oocytes or in human embryonic kidney (HEK293) cells. All of the mutations that have been examined to date, however, cause single putative amino acid substitutions. In this report, we studied a mutant CASR with an Alu-repetitive element inserted at codon 876, which was identified in affected members of families with the hypercalcemic disorders, familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), to understand how this insertion affects CASR function. After cloning of the Alu-repetitive element into the wild-type CASR cDNA, we transiently expressed the mutant receptor in HEK293 cells. Expression of mutant and wild-type receptors was assessed by Western analysis, and the effects of the mutation on extracellular calcium (Ca2+(o)) and gadolinium (Gd3+(o)) elicited increases in the cytosolic calcium concentration (Ca2+(i)) were examined in fura-2-loaded cells using dual wavelength fluorimetry. The insertion resulted in truncated receptor species that had molecular masses some 30 kD less than that of the wild-type CASR and exhibited no Ca2+(i) responses to either Ca2+(o) or Gd3+(o). A similar result was observed with a mutated CASR truncated at residue 876. However, the Alu mutant receptor had no impact on the function of the coexpressed wild-type receptor. Interestingly, the Alu mutant receptor demonstrated decreased cell surface expression relative to the wild-type receptor, whereas the CASR (A877stop) mutant exhibited increased cell surface expression. Thus, like the missense mutations that have been characterized to date in families with FHH, the Alu insertion in this family is a loss-of-function mutation that produces hypercalcemia by reducing the number of normally functional CASRs on the surface of parathyroid and kidney cells. In vitro transcription of exon 7 of the CASR containing the Alu sequence yielded the full-length mutant product and an additional shorter product that was truncated due to stalling of the polymerase at the poly(T) tract. In vitro translation of the mutant transcript yielded three truncated protein products representing termination in all three reading frames at stop codons within the Alu insertion. Thus sequences within the Alu contribute to slippage or frameshift mutagenesis during transcription and/or translation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Physiol Rev. 1991 Apr;71(2):371-411 - PubMed
    1. J Clin Invest. 1996 Oct 15;98(8):1860-6 - PubMed
    1. Annu Rev Biochem. 1991;60:653-88 - PubMed
    1. J Mol Biol. 1993 Aug 20;232(4):1030-47 - PubMed
    1. Nature. 1993 Dec 9;366(6455):575-80 - PubMed

Publication types

MeSH terms