Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 17;386(6626):717-21.
doi: 10.1038/386717a0.

Maintenance of somite borders in mice requires the Delta homologue DII1

Affiliations

Maintenance of somite borders in mice requires the Delta homologue DII1

M Hrabĕ de Angelis et al. Nature. .

Abstract

During vertebrate embryonic development, the paraxial mesoderm is subdivided into metameric subunits called somites. The arrangement and cranio-caudal polarity of the somites governs the metamerism of all somite-derived tissues and spinal ganglia. Little is known about the molecular mechanisms underlying somite formation, segment polarity, maintenance of segment borders, and the interdependency of these processes. The mouse Delta homologue Dll1, a member of the DSL gene family, is expressed in the presomitic mesoderm and posterior halves of somites. Here we report that, in Dll1-deficient mouse embryos, a primary metameric pattern is established in mesoderm, and cytodifferentiation is apparently normal, but the segments have no cranio-caudal polarity, and no epithelial somites form. Caudal sclerotome halves do not condense, and the pattern of spinal ganglia and nerves is perturbed, indicating loss of segment polarity. Myoblasts span segment borders, demonstrating that these borders are not maintained. These results show that Dll1 is involved in compartmentalization of somites, that dermomyotome and sclerotome differentiation are independent of formation of epithelia and subdivision of somites in cranial and caudal halves, and that compartmentalization is essential for the maintenance of segment borders in paraxial mesoderm-derived structures.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources