Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jan;10(6):667-75.
doi: 10.1007/BF00053023.

Effects of KT-362, a sarcolemmal and intracellular calcium antagonist, on calcium transients of cultured neonatal rat ventricular cells: a comparison with gallopamil and ryanodine

Affiliations
Comparative Study

Effects of KT-362, a sarcolemmal and intracellular calcium antagonist, on calcium transients of cultured neonatal rat ventricular cells: a comparison with gallopamil and ryanodine

Y Tatsukawa et al. Cardiovasc Drugs Ther. 1997 Jan.

Abstract

We evaluated the effects of KT-362 (5-[3-([2-(3,4-dimethoxyphenyl)-ethyl]amino)-1-oxopropyl]-2,3,4,5, -tetrahydro-1,5-benzothiazepine fumarate), a putative intracellular calcium antagonist, on the intracellular free calcium concentration ([Ca2+]i) of cultured neonatal rat ventricular cells using microfluorometry of fura-2. The effects were compared with those of gallopamil (D-600), a sarcolemmal calcium channel antagonist, and ryanodine, a modulator of sarcoplasmic reticulum (SR) function. KT-362 decreased both systolic [Ca2+]i (sCa) and diastolic [Ca2+]i (dCa) in cell aggregates, in a concentration (1, 3, 10, and 30 microM) and stimulation frequency (0.2, 0.5, and 1.0 Hz) dependent manner. The time to peak of the Ca2+ transient was significantly prolonged by KT-362 at a concentration of 30 microM, while the half-life of the Ca2+ transient was prolonged at concentrations of > or = 10 microM. Gallopamil (1 microM) decreased both sCa and dCa in a frequency (0.2, 0.5, and 1.0 Hz) dependent fashion, as was the case for KT-362, but did not change the time course of Ca2+ transients. Ryanodine (10 microM) prolonged the time to peak and half-life of the Ca2+ transient, as was also the case for KT-362, while the effect of ryanodine on dCa differed from that of KT-362. Finally, the effect of KT-362 on Ca2+ transients could be mimicked by simultaneous application of gallopamil and ryanodine. These results suggest that KT-362 is a novel compound that exerts depressant effects on both sarcolemmal Ca2+ channels, and perhaps Ca2+ release channels of the sarcoplasmic reticulum, in cultured neonatal rat ventricular cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources