Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 25;272(17):11147-51.
doi: 10.1074/jbc.272.17.11147.

Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress

Affiliations
Free article

Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress

D A Wink et al. J Biol Chem. .
Free article

Abstract

Thiol-containing proteins are key to numerous cellular processes, and their functions can be modified by thiol nitrosation or oxidation. Nitrosation reactions are quenched by O-2, while the oxidation chemistry mediated by peroxynitrite is quenched by excess flux of either NO or O-2. A solution of glutathione (GSH), a model thiol-containing tripeptide, exclusively yielded S-nitrosoglutathione when exposed to the NO donor, Et2NN(O)NONa. However, when xanthine oxidase was added to the same mixture, the yield of S-nitrosoglutathione dramatically decreased as the activity of xanthine oxidase increased, such that there was a 95% reduction in nitrosation when the fluxes of NO and O-2 were nearly equivalent. The presence of superoxide dismutase reversed O-2-mediated inhibition, while catalase had no effect. Increasing the flux of O-2 yielded oxidized glutathione (GSSG), peaking when the flux of NO and O-2 were approximately equivalent. The results suggest that oxidation and nitrosation of thiols by superoxide and NO are determined by their relative fluxes and may have physiological significance.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources