Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:71:93-119.
doi: 10.1016/s0065-230x(08)60097-4.

Mutations predisposing to hereditary nonpolyposis colorectal cancer

Affiliations
Review

Mutations predisposing to hereditary nonpolyposis colorectal cancer

P Peltomäki et al. Adv Cancer Res. 1997.

Abstract

Since 1993 four genes have been identified that, when mutated, confer predisposition to a form of hereditary colon cancer (hereditary nonpolyposis colorectal cancer [HNPCC]). These genes belong to the Mut-related family of DNA mismatch repair genes whose protein products are responsible for the recognition and correction of errors that arise during DNA replication. Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect demonstrable by biochemical assays, and in vivo this defect is presumed to lead to progressive accumulation of secondary mutations throughout the genome, some of which affect important growth-regulatory genes and, hence, give rise to cancer. To date, more than 70 different germline mutations have been detected in DNA mismatch repair genes and shown to be associated with HNPCC. Current evidence suggests that two genes, MSH2 and MLH1, account for roughly equal proportions of HNPCC kindreds, together being responsible for a majority of these families, but striking interethnic differences occur. Most mutations lead to truncated protein products. Mutation screening is quite demanding in HNPCC since, with a few exceptions, the predisposing mutations typically vary from kindred to kindred and individual mutations are scattered throughout the genes. Knowledge of the predisposing mutations allows genotype-phenotype correlations and forms the basis for further studies clarifying the pathogenesis of this disorder. In at-risk individuals, it allows predictive testing for cancer susceptibility and, consequently, appropriate clinical management of mutation carriers and noncarriers.

PubMed Disclaimer

MeSH terms

LinkOut - more resources