The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core
- PMID: 9115992
- DOI: 10.1021/bi962428+
The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core
Abstract
The active site of group I self-splicing introns occurs at the interface of two proposed structural domains. In the Tetrahymena intron, half of the catalytic core resides within the independently-folding P4-P6 domain while the other half belongs to a putative domain that includes helices P3, P7, P8, and P9 (P3-P9). To determine whether the P3-P9 region of the intron can also fold independently, we used Fe(II)-EDTA and dimethyl sulfate to probe the solvent accessibility of separate fragments of the Tetrahymena intron. These RNAs self-assemble into an active complex in trans, enabling analysis of their structural features both alone and within the complex. Our results show that while the P3-P9 region of the intron retains its secondary structure, most of the tertiary interactions within this region do not form stably in the absence of the P4-P6 domain. This indicates that the P4-P6 domain induces folding in the P3-P9 region, organizing the catalytic cleft between them. Thus the P4-P6 domain provides a scaffold for the folding of the Tetrahymena intron core.
Similar articles
-
Self-assembly of a group I intron active site from its component tertiary structural domains.RNA. 1995 Mar;1(1):36-45. RNA. 1995. PMID: 7489486 Free PMC article.
-
A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.J Mol Biol. 1996 Sep 20;262(2):87-104. doi: 10.1006/jmbi.1996.0501. J Mol Biol. 1996. PMID: 8831782
-
A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.J Mol Biol. 1996 Apr 5;257(3):512-31. doi: 10.1006/jmbi.1996.0182. J Mol Biol. 1996. PMID: 8648621
-
Folding mechanisms of group I ribozymes: role of stability and contact order.Biochem Soc Trans. 2002 Nov;30(Pt 6):1166-9. doi: 10.1042/bst0301166. Biochem Soc Trans. 2002. PMID: 12440997 Review.
-
RNA folds: insights from recent crystal structures.Annu Rev Biophys Biomol Struct. 1999;28:57-73. doi: 10.1146/annurev.biophys.28.1.57. Annu Rev Biophys Biomol Struct. 1999. PMID: 10410795 Review.
Cited by
-
Measuring the folding transition time of single RNA molecules.Biophys J. 2007 May 1;92(9):3275-83. doi: 10.1529/biophysj.106.094623. Epub 2007 Feb 16. Biophys J. 2007. PMID: 17307831 Free PMC article.
-
How the Conformations of an Internal Junction Contribute to Fold an RNA Domain.J Phys Chem B. 2018 Dec 13;122(49):11363-11372. doi: 10.1021/acs.jpcb.8b07262. Epub 2018 Oct 17. J Phys Chem B. 2018. PMID: 30285445 Free PMC article.
-
Maximizing RNA folding rates: a balancing act.RNA. 2000 Jun;6(6):790-4. doi: 10.1017/s1355838200000522. RNA. 2000. PMID: 10864039 Free PMC article. Review.
-
DMS footprinting of structured RNAs and RNA-protein complexes.Nat Protoc. 2007;2(10):2608-23. doi: 10.1038/nprot.2007.380. Nat Protoc. 2007. PMID: 17948004 Free PMC article.
-
Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme.RNA. 2013 Aug;19(8):1116-28. doi: 10.1261/rna.037572.112. Epub 2013 Jun 24. RNA. 2013. PMID: 23798664 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials