Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Dec;5(4):381-91.
doi: 10.1006/neur.1996.0051.

Neurochemical studies of Alzheimer's disease

Affiliations
Review

Neurochemical studies of Alzheimer's disease

A M Palmer. Neurodegeneration. 1996 Dec.

Abstract

Neurochemical studies of post-mortem human brain have made a major contribution to understanding the neuronal basis of neurodegenerative disease and formed the basis of rational therapies for such disorders. The application of this approach to the neurochemical pathology of Alzheimer's disease was pioneered by David Bowen. By combining assessment of post-mortem tissue (where the disease has usually run its full course) with tissue obtained ante-mortem (where the disease course is incomplete), it has been possible to (1) establish which neurones are lost in the disease, (2) determine which neurones are lost early in the course of the disease, and (3) discern which changes relate with the symptomatology of the disease. Thus, loss of cholinergic, noradrenergic and serotonergic innervation to the cortex occurs at an early stage, since markers of the neurones are lost in both post-mortem and ante-mortem tissue. By contrast, dopaminergic innervation remains intact and markers of cortical GABAergic interneurones are affected in post-mortem tissue only, suggesting that loss of GABAergic neurones occurs only at a late stage of the disease. Cholinergic markers and the number of pyramidal cell perikarya correlate with the severity of dementia, suggesting that loss of cholinergic and EAA neurones is the major contributor to the cognitive impairments of Alzheimer's disease. Loss of noradrenergic and serotonergic neurones probably contributes to the emergence of non-cognitive impairments in behaviour. Possible causes of selective neuronal loss are discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources