Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 1;244(2):426-33.
doi: 10.1111/j.1432-1033.1997.00426.x.

Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus

Affiliations
Free article

Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus

N Arfman et al. Eur J Biochem. .
Free article

Abstract

Oxidation of C1-C4 primary alcohols in thermotolerant Bacillus methanolicus strains is catalyzed by an NAD-dependent methanol dehydrogenase (MDH), composed of ten identical 43,000-Mr subunits. Each MDH subunit contains a tightly, but non-covalently, bound NAD(H) molecule, in addition to 1 Zn2+ and 1-2 Mg2+ ions. The NAD(H) cofactor is oxidized and reduced by formaldehyde and methanol, respectively, while it remains bound to the enzyme. Incubation of MDH with methanol and exogenous NAD (coenzyme) results in reduction of this NAD coenzyme. Both NAD species are not exchanged during catalysis. NAD thus plays two different and important roles in the MDH-catalyzed reaction, with the bound NAD cofactor acting as primary electron acceptor and the NAD coenzyme being responsible for reoxidation of the reduced cofactor. MDH obeys a ping-pong type reaction mechanism, which is consistent with such a temporary parking of reducing equivalents at the MDH-bound cofactor. Spectral studies show that, in the presence of exogenous NAD and Mg2+ ions, MDH interacts with a previously identified 50,000-Mr activator protein. The activator protein appears to facilitate the oxidation of the reduced NADH cofactor of MDH, which results in a strongly increased turnover rate of MDH.

PubMed Disclaimer

Publication types

LinkOut - more resources