Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 1;183(1):108-21.
doi: 10.1006/dbio.1996.8487.

SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse

Affiliations
Free article

SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse

L J Ng et al. Dev Biol. .
Free article

Abstract

Two lines of evidence suggest that the Sry-related gene Sox9 is important for chondrogenesis in mammalian embryos. Sox9 mRNA is expressed in chondrogenic condensations in mice, and mutations in human SOX9 are known to cause skeletal dysplasia. We show here that mouse SOX9 protein is able to bind to a SOX/SRY consensus motif in DNA and contains a modular transcriptional activation domain, consistent with a role for SOX9 as a transcription factor acting on genes involved in cartilage development. One such gene is Col2a1, which encodes type II collagen, the major structural component of cartilage. We have compared, in detail, the expression of Sox9 and Col2a1 during mouse development. In chondrogenic tissues the expression profiles of the two genes were remarkably similar. Coexpression was detected in some nonchondrogenic tissues such as the notochord, otic vesicle, and neural tube, but others such as heart and lung differed in their expression of the two genes. Immunohistochemistry using an antibody specific for SOX9 revealed that expression of SOX9 protein mirrored the distribution of Sox9 mRNA. Our results suggest that SOX9 protein is involved in the regulation of Col2a1 during chondrogenesis, but that this regulation is likely to depend on additional cofactors.

PubMed Disclaimer

Publication types

MeSH terms