Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;22(5):835-42.
doi: 10.1016/s0891-5849(96)00430-3.

In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency

Affiliations

In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency

K A Sukalski et al. Free Radic Biol Med. 1997.

Abstract

Oxidative stress has been postulated to contribute to the pathology associated with dietary copper deficiency. In vivo, erythrocytes are probable targets of oxidative damage because they are exposed to high concentrations of oxygen and contain heme iron that can autoxidize, which results in the formation of superoxide anions. Activity of the important antioxidant enzyme, copper, zinc superoxide dismutase, decreases markedly in erythrocytes during copper deficiency. The effect of dietary copper deficiency on indicators of oxidative stress was examined in erythrocyte membranes of rats maintained on a purified copper-deficient diet for 35 days after weaning. Erythrocytes were separated into young and old populations on a Percoll gradient prior to membrane isolation and quantification of lipid peroxides and protein carbonyls. Protein carbonyls, determined by Western blot immunoassay, were detected predominantly in both the alpha and beta chains of spectrin. Alpha and beta subunits of spectrin in erythrocyte membranes from copper-deficient rats contained higher amounts of carbonyls than controls, regardless of the population of erythrocytes studied. This study suggests that spectrin may be a specific target for oxidative damage when erythrocyte copper, zinc superoxide dismutase activity is reduced by copper deficiency.

PubMed Disclaimer

Publication types

LinkOut - more resources