Physics of chemoreception
- PMID: 911982
- PMCID: PMC1473391
- DOI: 10.1016/S0006-3495(77)85544-6
Physics of chemoreception
Abstract
Statistical fluctuations limit the precision with which a microorganism can, in a given time T, determine the concentration of a chemoattractant in the surrounding medium. The best a cell can do is to monitor continually the state of occupation of receptors distributed over its surface. For nearly optimum performance only a small fraction of the surface need be specifically adsorbing. The probability that a molecule that has collided with the cell will find a receptor is Ns/(Ns + pi a), if N receptors, each with a binding site of radius s, are evenly distributed over a cell of radius a. There is ample room for many indenpendent systems of specific receptors. The adsorption rate for molecules of moderate size cannot be significantly enhanced by motion of the cell or by stirring of the medium by the cell. The least fractional error attainable in the determination of a concentration c is approximately (TcaD) - 1/2, where D is diffusion constant of the attractant. The number of specific receptors needed to attain such precision is about a/s. Data on bacteriophage absorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evaluated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of optimum design.
Similar articles
-
A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures.Math Biosci. 1992 May;109(2):127-49. doi: 10.1016/0025-5564(92)90042-u. Math Biosci. 1992. PMID: 1600283
-
Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.Cell Motil Cytoskeleton. 1988;11(1):1-15. doi: 10.1002/cm.970110102. Cell Motil Cytoskeleton. 1988. PMID: 3208295
-
A model regulatory system: bacterial chemotaxis.Physiol Rev. 1979 Oct;59(4):811-62. doi: 10.1152/physrev.1979.59.4.811. Physiol Rev. 1979. PMID: 386396 Review. No abstract available.
-
Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection.Biophys J. 2007 Sep 1;93(5):1787-96. doi: 10.1529/biophysj.107.104356. Epub 2007 May 18. Biophys J. 2007. PMID: 17513372 Free PMC article.
-
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.Bull Math Biol. 2008 Aug;70(6):1525-69. doi: 10.1007/s11538-008-9321-6. Epub 2008 Jul 19. Bull Math Biol. 2008. PMID: 18642048 Review.
Cited by
-
Physical extraction of antigen and information.Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2320537121. doi: 10.1073/pnas.2320537121. Epub 2024 Sep 20. Proc Natl Acad Sci U S A. 2024. PMID: 39302963 Free PMC article.
-
Mathematical modelling and computational study of two-dimensional and three-dimensional dynamics of receptor-ligand interactions in signalling response mechanisms.J Math Biol. 2014 Sep;69(3):553-82. doi: 10.1007/s00285-013-0712-4. Epub 2013 Jul 28. J Math Biol. 2014. PMID: 23893005
-
Integrative Neuroscience of Paramecium, a "Swimming Neuron".eNeuro. 2021 Jun 7;8(3):ENEURO.0018-21.2021. doi: 10.1523/ENEURO.0018-21.2021. Print 2021 May-Jun. eNeuro. 2021. PMID: 33952615 Free PMC article. Review.
-
A probabilistic algorithm for optimising the steady-state diffusional flux into a partially absorbing body.Sci Rep. 2023 Dec 20;13(1):22815. doi: 10.1038/s41598-023-49566-4. Sci Rep. 2023. PMID: 38129494 Free PMC article.
-
Mathematical analysis of cell-target encounter rates in three dimensions. Effect of chemotaxis.Biophys J. 1990 May;57(5):1009-23. doi: 10.1016/S0006-3495(90)82620-5. Biophys J. 1990. PMID: 2340340 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous