Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan;77(1):236-46.
doi: 10.1152/jn.1997.77.1.236.

TTX-sensitive and -resistant Na+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma cells

Affiliations
Free article

TTX-sensitive and -resistant Na+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma cells

X Q Gu et al. J Neurophysiol. 1997 Jan.
Free article

Abstract

To examine the molecular basis for membrane excitability in a neuroblastoma cell line, we used whole cell patch-clamp methods and reverse transcription-polymerase chain reaction (RT-PCR) to study Na+ currents and channels in B104 cells. We distinguished Tetrodotoxin (TTX)-sensitive and -resistant Na+ currents and detected the mRNA for the cardiac rH1 channel in B104 cells. Na+ currents could be recorded in 65% of cells. In the absence of TTX, mean peak Na+ current density was 126 +/- 19 pA/pF, corresponding to a channel density of 2.7 +/- 0.4/micron 2 (mean +/- SE). Time-to-peak (t-peak), activation (tau m), and inactivation time constants (tau h) for Na+ currents in B104 cells were 1.0 +/- 0.04, 0.4 +/- 0.06, and 0.9 +/- 0.04 ms at -10 mV. The peak conductance-voltage relationship had a V 1/2 of -39.8 +/- 1.5 mV. V 1/2 for steady-state inactivation was -81.6 +/- 1.5 mV. TTX-sensitive and -resistant components of the Na current had half-maximal inhibitions (IC50), respectively, of 1.2 nM and, minimally, 575.5 nM. The TTX-sensitive and -resistant Na+ currents were kinetically distinct; time-to-peak, tau m, and tau h for TTX-sensitive currents were shorter than for TTX-resistant currents. Steady-state voltage dependence of the two currents was indistinguishable. The presence of TTX-sensitive and -resistant Na+ currents, which are pharmacologically and kinetically distinct, led us to search for mRNAs known to be associated with TTX-resistant channels, in addition to the alpha subunit mRNAs, which have previously been shown to be expressed in these cells. Using RT-PCR and restriction enzyme mapping, we were unable to detect alpha SNS, but detected mRNA for rH1, which is known to encode a TTX-resistant channel, in B104 cells. B104 neuroblastoma cells thus express TTX-sensitive and -resistant Na+ currents. These appear to be encoded by neuronal-type and cardiac Na+ channel mRNAs including the RH1 transcript. This cell line may be useful for studies on the rH1 channel, which is known to be mutated in the long-QT syndrome.

PubMed Disclaimer

Publication types

LinkOut - more resources