Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;17(4):2336-46.
doi: 10.1128/MCB.17.4.2336.

SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene

Affiliations

SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene

V Lefebvre et al. Mol Cell Biol. 1997 Apr.

Abstract

The identification of mutations in the SRY-related SOX9 gene in patients with campomelic dysplasia, a severe skeletal malformation syndrome, and the abundant expression of Sox9 in mouse chondroprogenitor cells and fully differentiated chondrocytes during embryonic development have suggested the hypothesis that SOX9 might play a role in chondrogenesis. Our previous experiments with the gene (Col2a1) for collagen II, an early and abundant marker of chondrocyte differentiation, identified a minimal DNA element in intron 1 which directs chondrocyte-specific expression in transgenic mice. This element is also a strong chondrocyte-specific enhancer in transient transfection experiments. We show here that Col2a1 expression is closely correlated with high levels of SOX9 RNA and protein in chondrocytes. Our experiments indicate that the minimal Col2a1 enhancer is a direct target for Sox9. Indeed, SOX9 binds to a sequence of the minimal Col2a1 enhancer that is essential for activity in chondrocytes, and SOX9 acts as a potent activator of this enhancer in cotransfection experiments in nonchondrocytic cells. Mutations in the enhancer that prevent binding of SOX9 abolish enhancer activity in chondrocytes and suppress enhancer activation by SOX9 in nonchondrocytic cells. Other SOX family members are ineffective. Expression of a truncated SOX9 protein lacking the transactivation domain but retaining DNA-binding activity interferes with enhancer activation by full-length SOX9 in fibroblasts and inhibits enhancer activity in chondrocytes. Our results strongly suggest a model whereby SOX9 is involved in the control of the cell-specific activation of COL2A1 in chondrocytes, an essential component of the differentiation program of these cells. We speculate that in campomelic dysplasia a decrease in SOX9 activity would inhibit production of collagen II, and eventually other cartilage matrix proteins, leading to major skeletal anomalies.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nucleic Acids Res. 1988 Oct 25;16(20):9687-705 - PubMed
    1. Development. 1996 Sep;122(9):2813-22 - PubMed
    1. Cell. 1990 Feb 9;60(3):375-86 - PubMed
    1. Gene. 1989 Dec 21;85(1):15-23 - PubMed
    1. Biotechniques. 1988 Jul-Aug;6(7):632-8 - PubMed

Publication types

MeSH terms