Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;35(8):1057-64.
doi: 10.1016/s0028-3908(96)00041-x.

The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice

Affiliations

The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice

C Mathis et al. Neuropharmacology. 1996.

Abstract

The neurosteroid pregnenolone sulfate (PREG-S) has been shown to modulate positively NMDA receptor activity and to have memory enhancing properties in mice. The present study was designed to evaluate the effects of post-training administration of PREG-S, alone or in combination with D-2-amino-5-phosphonovalerate (D-AP5), a competitive NMDA receptor antagonist, in Y-maze avoidance and appetitively motivated lever-press learning tasks and in a traction reflex test in mice. Intracerebroventricular (i.c.v.) administration of PREG-S (0.01-0.1 nmol/mouse) blocked the selective retention deficits induced by 0.02 nmol D-AP5 in the Y-maze avoidance task. PREG-S (0.1 nmol, i.c.v.) also blocked the retention deficits induced by 0.02 nmol D-AP5 in the lever-press task. Post-training administration of PREG-S alone (0.001-0.1 nmol, i.c.v.) had no effect on retention performance in the Y-maze and the lever-press tasks. PREG-S (1-10 nmol, i.c.v.) significantly reduced the impairment of the traction reflex induced by 2 nmol D-AP5. The ability of PREG-S to block retention performance deficits as well as motor impairment induced by D-AP5 is in agreement with its positive modulatory action at NMDA receptors.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources