Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb;272(2 Pt 1):C491-500.
doi: 10.1152/ajpcell.1997.272.2.C491.

Effect of acidosis on control of respiration in skeletal muscle

Affiliations

Effect of acidosis on control of respiration in skeletal muscle

S J Harkema et al. Am J Physiol. 1997 Feb.

Abstract

The relationships between oxygen consumption (Q(O2)) and calculated cytoplasmic ADP concentration ([ADP]) and the free energy of ATP hydrolysis (deltaG(ATP)) were examined in ex vivo arterially perfused cat soleus muscles during repetitive twitch stimulation under normocapnic (5% CO2) and hypercapnic (70% CO2) conditions. Hypercapnia decreased extra- and intracellular pH by over 0.5 but had no significant effect on Q(O2) or phosphocreatine (PCr)/ATP in muscles at rest. The maximum Q(O2) measured during stimulation and the rate constant for PCr recovery after stimulation both decreased during hypercapnic compared with normocapnic perfusion, but the estimated ATP/O2 was unchanged. The change in PCr and deltaG(ATP) with increasing Q(O2) was greater during hypercapnic compared with normocapnic stimulation, as expected from the decrease in maximum Q(O2). However, the relationships between Q(O2) and [ADP] and deltaG(ATP) were both shifted to the left during hypercapnia compared with normocapnia. The results show that changes in cytoplasmic adenine nucleotides and phosphate are not sufficient to explain the control of respiration in skeletal muscle. However, in the context of thermodynamic models of respiratory control, the results can be explained by increased intramitochondrial potential for ATP synthesis at low pH.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources