Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan-Feb;25(1):204-17.
doi: 10.1007/BF02738551.

Analysis of pig's coronary arterial blood flow with detailed anatomical data

Affiliations

Analysis of pig's coronary arterial blood flow with detailed anatomical data

G S Kassab et al. Ann Biomed Eng. 1997 Jan-Feb.

Abstract

Blood flow to perfuse the muscle cells of the heart is distributed by the capillary blood vessels via the coronary arterial tree. Because the branching pattern and vascular geometry of the coronary vessels in the ventricles and atria are nonuniform, the flow in all of the coronary capillary blood vessels is not the same. This nonuniformity of perfusion has obvious physiological meaning, and must depend on the anatomy and branching pattern of the arterial tree. In this study, the statistical distribution of blood pressure, blood flow, and blood volume in all branches of the coronary arterial tree is determined based on the anatomical branching pattern of the coronary arterial tree and the statistical data on the lengths and diameters of the blood vessels. Spatial nonuniformity of the flow field is represented by dispersions of various quantities (SD/mean) that are determined as functions of the order numbers of the blood vessels. In the determination, we used a new, complete set of statistical data on the branching pattern and vascular geometry of the coronary arterial trees. We wrote hemodynamic equations for flow in every vessel and every node of a circuit, and solved them numerically. The results of two circuits are compared: one asymmetric model satisfies all anatomical data (including the mean connectivity matrix) and the other, a symmetric model, satisfies all mean anatomical data except the connectivity matrix. It was found that the mean longitudinal pressure drop profile as functions of the vessel order numbers are similar in both models, but the asymmetric model yields interesting dispersion profiles of blood pressure and blood flow. Mathematical modeling of the anatomy and hemodynamics is illustrated with discussions on its accuracy.

PubMed Disclaimer

Publication types

LinkOut - more resources