Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;11(5):234-41.
doi: 10.1007/BF01746203.

The role of Ca2+ release from sarcoplasmic reticulum in the regulation of sinoatrial node automaticity

Affiliations

The role of Ca2+ release from sarcoplasmic reticulum in the regulation of sinoatrial node automaticity

T Hata et al. Heart Vessels. 1996.

Abstract

The role of Ca2+ release channels in the sarcoplasmic reticulum in modulating physiological automaticity of the sinoatrial (SA) node was studied by recording transmembrane action potentials and membrane ionic currents in small preparations of the rabbit SA node. Ryanodine, which modifies the conductance and gating behavior of the Ca2+ release channels, was used to block Ca2+ release from the sarcoplasmic reticulum. Superfusion of 1-mM ryanodine decreased the spontaneous firing frequency as well as the maximal rate of depolarization of the SA, and these reductions reached a steady state within approximately 5 min. The action potential recordings revealed that the latter part of diastolic depolarization was depressed and that the take-off potential became less negative. This suggested that the negative chronotropic effect of ryanodine resulted from the blockade of physiological Ca2+ release from the sarcoplasmic reticulum. In voltage clamp experiments, using double-microelectrode techniques, ryanodine did not markedly reduce the Ca2+ current (ICa) but decreased the delayed rectifying K+ current (IK), the steady-state inward current (Iss), and the hyperpolarization-activated inward current (Ih). These observations suggest that, even when the function of C2+ channels in the cell membrane is normally maintained, depression of Ca2+ release channels in the sarcoplasmic reticulum would prevent sufficient elevation of the Ca2+ concentration in SA node cells for the activation of various ionic currents, and, thus adversely affect the physiological automaticity of this primary cardiac pacemaker.

PubMed Disclaimer

References

    1. J Physiol. 1969 Jan;200(1):205-31 - PubMed
    1. Pflugers Arch. 1983 May;397(3):190-4 - PubMed
    1. J Pharmacol Exp Ther. 1979 Apr;209(1):48-55 - PubMed
    1. Biochim Biophys Acta. 1987 Jun 30;900(2):221-9 - PubMed
    1. Pflugers Arch. 1984 Nov;402(3):248-57 - PubMed

MeSH terms

LinkOut - more resources