Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 15;499 ( Pt 3)(Pt 3):733-46.
doi: 10.1113/jphysiol.1997.sp021965.

Nitric oxide regulates NMDA-driven GABAergic inputs to type I neurones of the rat paraventricular nucleus

Affiliations

Nitric oxide regulates NMDA-driven GABAergic inputs to type I neurones of the rat paraventricular nucleus

J S Bains et al. J Physiol. .

Abstract

1. Whole-cell recordings were obtained from type I paraventricular nucleus (PVN) neurones in coronal slices of rat hypothalamus to study the involvement of nitric oxide (NO) in the modulation of inhibitory transmission resulting from the activation of N-methyl-D-aspartate (NMDA) receptors by the high affinity receptor agonist D,L-tetrazol-5-ylglycine. 2. A brief pulse of NMDA agonist (0.1-10 microM) faithfully elicited increases in action potential firing frequency in all type I cells tested (n = 55). In cells with membrane potentials positive to -75 mV, this excitation was accompanied by an underlying depolarization (> 2 mV) in the majority of cases (n = 45). At membrane potentials negative to -75 mV, NMDA agonist application elicited an initial monotonie depolarization, which was auxiliary to profound, rhythmic oscillations of the membrane potential, resulting in the emergence of burst-like activity in these cells (n = 8). 3. In addition to depolarizing the neurones, the NMDA agonist also elicited inhibitory postsynaptic potentials (IPSPs) in 40% (n = 22) of the cells tested. The IPSPs were inhibited by the GABAA receptor antagonist bicuculline methiodide (BMI). 4. Microdialysis of NO into the PVN has been shown to increase local levels of inhibitory neurotransmitters, including GABA. The possibility that NO-induced increases in GABA lead to an increase in inhibitory synaptic activity in PVN was investigated by administering NO by three different methods. Bath application of the donor compound, S-nitroso-N-acetyl-penicillamine (SNAP; n = 7), bubbled NO solution (n = 5), or the NO precursor L-arginine (n = 6) all elicited increases in IPSP frequency. 5. Production of NO in other brain centres has been linked to the activation of the NMDA receptor. In order to determine whether the increase in IPSPs following NMDA was the result of activation of NO, the production of NO was blocked with the NO synthase inhibitor N omega-nitro-L-arginine methylester (L-NAME). Subsequent NMDA receptor activation elicited more pronounced depolarizations, but there was no accompanying increase in IPSP frequency (n = 5). 6. This study demonstrates that GABAergic inhibition resulting from NMDA receptor activation can be regulated profoundly by NO. By increasing inhibitory transmission within a nucleus, NO may serve as an important intermediary in the regulation of neuronal excitability in the central nervous system.

PubMed Disclaimer

References

    1. Brain Res. 1976 Nov 26;117(2):305-12 - PubMed
    1. Prog Neurobiol. 1991;36(2):93-130 - PubMed
    1. Trends Neurosci. 1991 Feb;14(2):60-7 - PubMed
    1. J Physiol. 1991 Mar;434:271-93 - PubMed
    1. J Comp Neurol. 1991 May 15;307(3):405-16 - PubMed

Publication types

MeSH terms

LinkOut - more resources