Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;171(2):168-78.
doi: 10.1002/(SICI)1097-4652(199705)171:2<168::AID-JCP7>3.0.CO;2-M.

Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices

Affiliations

Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices

J T Mandeville et al. J Cell Physiol. 1997 May.

Abstract

Repeated transient increases in intracellular free calcium levels ([Ca2-]i) are required for polymorphonuclear neutrophil migration on two-dimensional surfaces coated with fibronectin or vitronectin. Cells in which [Ca2+]i is buffered with quin2 become stuck on these substrates. Neutrophils migrating through the extracellular matrix in vivo encounter these and other substrates in a three-dimensional architecture that may alter the spatial distribution of adhesion receptors in contact with the matrix. In this study, we used fluorescence confocal microscopy to obtain moving three-dimensional images of neutrophils migrating through a biological tissue (human amnion) in the presence and absence of [Ca2+]i-buffering with quin2. In the absence of buffering, [Ca2+]i transients similar to those seen in cells migrating in two-dimensions were observed. [Ca2+]i-buffered neutrophils were able to migrate into the matrix, but they became attached firmly to the substrate at the rear of the cell, resulting in a drastically elongated morphology. Immunofluorescence revealed that neutrophils adhered to regions of the matrix that contained fibronectin. RGD-containing peptides and antibodies that block integrin adhesion receptors for fibronectin and vitronectin were able to rescue the migration of quin2-treated cells through three-dimensional gels containing fibronectin and vitronectin. These data show that neutrophils migrating through physiologically relevant, three-dimensional matrices undergo repetitive increases in [Ca2+]i that are required for integrin-mediated detachment from the matrix.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources