Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;71(3):265-73.
doi: 10.1080/095530097144148.

Detection of radiation-induced chromosome aberrations using fluorescence in situ hybridization in drug-induced premature chromosome condensations of tumour cell lines with different radiosensitivities

Affiliations

Detection of radiation-induced chromosome aberrations using fluorescence in situ hybridization in drug-induced premature chromosome condensations of tumour cell lines with different radiosensitivities

J M Coco-Martin et al. Int J Radiat Biol. 1997 Mar.

Abstract

A potential assay for radiosensitivity of human tumours is that of radiation-induced chromosome damage determined on metaphase spreads of human solid tumours. It is often difficult, however, to obtain enough metaphases for cytogenetic analysis after radiation. A possible solution would be to use the technique of premature chromosome condensation (PCC), enabling the study of interphase cells. The induction of PCCs using mitotic inducer cells is technically difficult, however, and the frequency of induction relatively low. We have attempted to use another approach, to induce PCCs using the phosphatase inhibitors okadaic acid and calyculin A. Both inhibitors were found to induce PCCs in several human tumour cell lines, with calyculin A producing the higher incidence. Determination of radiation-induced chromosome aberrations using fluorescence in situ hybridization on these chemically induced PCCs showed a clear difference between a radiosensitive (SCC61) and a radioresistant (A549) tumour cell line, with more aberrations in the sensitive line. Owing to incomplete condensation compared with that in standard metaphases, accurate classification of aberration types was not possible. Despite this limitation, the present data indicate that this relatively quick and simple method may be useful for determining chromosome aberrations in interphase cells and potentially in human solid tumours for predictive assay purposes.

PubMed Disclaimer

Publication types

LinkOut - more resources