Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb 15;36(4):301-12.
doi: 10.1002/(SICI)1097-0029(19970215)36:4<301::AID-JEMT8>3.0.CO;2-O.

Imaging of BrdU-labeled human metaphase chromosomes with a high resolution scanning ion microprobe

Affiliations

Imaging of BrdU-labeled human metaphase chromosomes with a high resolution scanning ion microprobe

R Levi-Setti et al. Microsc Res Tech. .

Abstract

Detailed maps of the A-T distribution within human mitotic chromosomes labeled with BrdU are obtained with a high resolution scanning ion microprobe through the detection of bromine by imaging secondary ion mass spectrometry (SIMS). Corresponding maps of the emission loci of the molecular ion CN- describe the overall DNA, RNA and protein distribution in the chromosomes. Several chromosome preparations exhibit base-specific banding patterns (SIMS-bands) which mimic the well known G- or Q-bands resulting from conventional staining methods for optical microscopy. SIMS-bands are more noticeable in mitotic cells at the first cell cycle and after in situ denaturation or Giemsa staining. Sister chromatid exchanges (SCE) at the second cell cycle and beyond, occurring both spontaneously and promoted following cell culture exposure to the chemical aphidicolin (an inhibitor of DNA replication), can be visualized readily from the relative label signal intensities between sister chromatids. The comparison of base-specific label maps with CN- maps, in conjunction with the appearance of base-specific banding patterns, is informative about protein survival and/or removal following different chromosome preparation protocols. In addition, the resulting condensation state of the chromosomes can be appraised during SIMS analysis from the sample topography (imaged via the collection of mass-unresolved secondary ions). We demonstrate that imaging SIMS is a powerful complement to existing methods for the study of banding mechanisms and for the elucidation of chromosome structure. The advantages of this novel approach to the systematic and quantitative study of cytogenetic phenomena and methodologies are still largely untapped.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources