Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 May;20(5):204-12.
doi: 10.1016/s0166-2236(96)01015-6.

Presynaptic inhibition of elicited neurotransmitter release

Affiliations
Review

Presynaptic inhibition of elicited neurotransmitter release

L G Wu et al. Trends Neurosci. 1997 May.

Abstract

Activation of presynaptic receptors for a variety of neurotransmitters and neuromodulators inhibits transmitter release at many synapses. Such presynaptic inhibition might serve as a means of adjusting synaptic strength or preventing excessive transmitter release, or both. Previous evidence showed that presynaptic modulators inhibit Ca2+ channels and activate K+ channels at neuronal somata. These modulators also inhibit spontaneous transmitter release by mechanisms downstream of Ca2+ entry. The relative contribution of the above mechanisms to the inhibition of elicited release has been debated for a long time. Recent evidence at synapses where the relationship between transmitter release and presynaptic Ca2+ influx has been well characterized suggests that inhibition of presynaptic voltage-dependent Ca2+ channels plays the major role in presynaptic inhibition of elicited neurotransmitter release. In addition, modulation of the release machinery might contribute to inhibition of elicited release.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources