Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Apr:143 ( Pt 4):1369-1379.
doi: 10.1099/00221287-143-4-1369.

Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34

Affiliations
Free article
Comparative Study

Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34

Jean-Alain Pocard et al. Microbiology (Reading). 1997 Apr.
Free article

Abstract

As a first step towards the elucidation of the molecular mechanisms responsible for the utilization of choline and glycine betaine (betaine) either as carbon and nitrogen sources or as osmoprotectants in Sinorhizobium meliloti, we selected a Tn5 mutant, LTS23-1020, which failed to grow on choline but grew on betaine. The mutant was deficient in choline dehydrogenase (CDH) activity, failed to oxidize [methyl-14C]choline to [methyl-14C]betaine, and did not use choline, but still used betaine, as an osmoprotectant. The Tn5 mutation in LTS23-1020 was complemented by plasmid pCHO34, isolated from a genomic bank of S. meliloti 102F34. Subcloning and DNA sequencing showed that pCHO34 harbours two ORFs which showed 60% and 57% identity with the Escherichia coli betB gene encoding betaine-aldehyde dehydrogenase (BADH) and betA gene encoding CDH, respectively. In addition to the homology with E. coli genes, the deduced sequence of the sinorhizobial BADH protein displays consensus sequences also found in plant BADHs. The deduced sequence of the sinorhizobial CDH protein shares only 21% identical residues with choline oxidase from Arthrobacter globiformis. The structural organization of the betBA genes in S. meliloti differs from that described in E. coli: (i) the two ORFs are separated by a 210 bp sequence containing inverted repeats resembling a putative rho-independent transcription terminator, and (ii) no sequence homologous to betT (high-affinity choline transport system) or betI (regulator) was found in the vicinity of the sinorhizobial betBA genes. Evidence is also presented that the S. meliloti betBA genes are not located on the megaplasmids.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources