Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:18:105-34.
doi: 10.1146/annurev.publhealth.18.1.105.

Survival analysis in public health research

Affiliations
Review

Survival analysis in public health research

E T Lee et al. Annu Rev Public Health. 1997.

Abstract

This paper reviews the common statistical techniques employed to analyze survival data in public health research. Due to the presence of censoring, the data are not amenable to the usual method of analysis. The improvement in statistical computing and wide accessibility of personal computers led to the rapid development and popularity of nonparametric over parametric procedures. The former required less stringent conditions. But, if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret. Nonparametric techniques include the Kaplan-Meier method for estimating the survival function and the Cox proportional hazards model to identify risk factors and to obtain adjusted risk ratios. In cases where the assumption of proportional hazards is not tenable, the data can be stratified and a model fitted with different baseline functions in each stratum. Parametric modeling such as the accelerated failure time model also may be used. Hazard functions for the exponential, Weibull, gamma, Gompertz, lognormal, and log-logistic distributions are described. Examples from published literature are given to illustrate the various methods. The paper is intended for public health professionals who are interested in survival data analysis.

PubMed Disclaimer

LinkOut - more resources