Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;53(1):230-42.

Large hierarchical Bayesian analysis of multivariate survival data

Affiliations
  • PMID: 9147593

Large hierarchical Bayesian analysis of multivariate survival data

P Gustafson. Biometrics. 1997 Mar.

Abstract

Failure times that are grouped according to shared environments arise commonly in statistical practice. That is, multiple responses may be observed for each of many units. For instance, the units might be patients or centers in a clinical trial setting. Bayesian hierarchical models are appropriate for data analysis in this context. At the first stage of the model, survival times can be modelled via the Cox partial likelihood, using a justification due to Kalbfleisch (1978, Journal of the Royal Statistical Society, Series B 40, 214-221). Thus, questionable parametric assumptions are avoided. Conventional wisdom dictates that it is comparatively safe to make parametric assumptions at subsequent stages. Thus, unit-specific parameters are modelled parametrically. The posterior distribution of parameters given observed data is examined using Markov chain Monte Carlo methods. Specifically, the hybrid Monte Carlo method, as described by Neal (1993a, in Advances in Neural Information Processing 5, 475-482; 1993b, Probabilistic inference using Markov chain Monte Carlo methods), is utilized.

PubMed Disclaimer

Publication types

MeSH terms