Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 16;254(3):219-30.
doi: 10.1007/s004380050410.

Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats

Affiliations

Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats

H A Becker et al. Mol Gen Genet. .

Abstract

The mobility of maize transposable element Activator (Ac) is dependent on the 11-bp terminal inverted repeats (IRs) and approximately 250 subterminal nucleotides at each end. These sequences flank the coding region for the transposase (TPase) protein, which is required for the transposition reaction. Here we show that Ac TPase has a bipartite DNA binding domain, and recognizes the IRs and subterminal sequences in the Ac ends. TPase binds cooperatively to repetitive ACG and TCG sequences, of which 25 copies are found in the 5' and 20 copies in the 3' subterminal regions. TPase affinity is highest when these sites are flanked on the 3' side by an additional G residue (A/TCGG), which is found at 75% of binding sites. Moreover, TPase binds specifically to the Ac IRs, albeit with much lower affinity. Two mutations within the IRs that immobilize Ac abolish TPase binding completely. The basic DNA binding domain of TPase is split into two subdomains. Binding to the subterminal motifs is accomplished by the C-terminal subdomain alone, whereas recognition of the IRs requires the N-terminal subdomain in addition. Furthermore, TPase is extremely flexible in DNA binding. Two direct or inverted binding sites are bound equally well, and sites that are five to twelve bases apart are similarly well bound. The consequences of these findings for the Ac transposition reaction are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources