Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 24;390(1-2):45-50.
doi: 10.1016/s0165-1218(96)00164-4.

Formation of 8-hydroxy-2'-deoxyguanosine following treatment of 2'-deoxyguanosine or DNA by hydrogen peroxide or glutathione

Affiliations

Formation of 8-hydroxy-2'-deoxyguanosine following treatment of 2'-deoxyguanosine or DNA by hydrogen peroxide or glutathione

A Abu-Shakra et al. Mutat Res. .

Abstract

We have demonstrated that free radicals generated by hydrogen peroxide (H2O2), in the presence of divalent iron (Fe2+) and a chelator (EDTA), oxidize 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG). The 8-OHdG formed by this reaction was isolated and quantitated using reverse-phase HPLC with UV and electrochemical detection. A 1-h incubation of dG with H2O2 caused a 50% increase in 8-OHdG over background, which increased to 100% after 2 h. However, when an H2O2-generating system [glutathione (GSH), Fe2+, EDTA] was used, there was no increase in 8-OHdG yield after the 1-h incubation, but up to a 50% increase over background was observed with GSH after 2-h incubation. Attempts to detect increased levels of 8-OHdG after H2O2- or GSH-treatment of purified calf thymus or rat DNA, or purified Salmonella typhimurium DNA were not successful. This may have been because the treatment procedures used generated 8-OHdG in the control samples at sufficiently high levels to mask any H2O2-induced responses that may have been present. This artifactual production of 8-OHdG has presented a problem in all in vitro studies to date. In contrast, treatment of Salmonella cells (strain TA104) with increasing concentrations of H2O2, caused a doubling in the 8-OHdG yield. GSH-treatment of strain TA104 cells under the same conditions did not result in an increase of 8-OHdG. The study presented here shows that the ubiquitous molecule H2O2 can play a major role in DNA oxidation, mutation, and damage.

PubMed Disclaimer

MeSH terms