Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;29(3):939-48.
doi: 10.1006/jmcc.1996.0336.

Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion

Affiliations

Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion

R B Wambolt et al. J Mol Cell Cardiol. 1997 Mar.

Abstract

It is not yet known if the alterations in myocardial glucose metabolism and the exaggerated left ventricular dysfunction that occur during reperfusion in hypertrophied hearts are reversible. Thus, we studied isolated working hearts from aortic-banded (n = 29) and sham-operated control (n = 32) male Sprague-Dawley rats with or without enalapril maleate treatment (25.6 +/- 0.8 mg/kg per day, p.o.) to determine the effect of regression of cardiac hypertrophy on myocardial glucose metabolism and post-ischemic heart function. Hearts were perfused with buffer containing 1.2 mM palmitate, 11 mM [5-3H]/[U-14C]-glucose, 0.5 mM lactate and 100 microU/ml insulin. Glucose metabolism [rates of glycolysis (3H2O production) and rates of oxidation (14CO2 production) of exogenous glucose] and heart function (heart rate x peak systolic pressure) were measured during 30 min pre-ischemic perfusion and 60 min of reperfusion following 20 min of global, no-flow ischemia. Hearts from untreated aortic-banded rats were hypertrophied, being 27.6 +/- 1.8% larger than hearts from untreated control rats. Enalapril treatment caused regression of cardiac hypertrophy that normalized heart weight in aortic-banded rats. Rates of glycolysis of exogenous glucose in hearts from untreated aortic-banded rats were accelerated compared to rates in hearts from untreated control rats during pre-ischemic perfusion (4391 +/- 97 v 2652 +/- 69 nmol glucose/min per g dry wt, respectively, P < 0.05) and reperfusion (2402 +/- 58 v 1597 +/- 88 nmol glucose/min per g dry wt. respectively, P < 0.05). In contrast, rates of glycolysis of exogenous glucose in hearts from enalapril-treated aortic-banded rats were normalized before and after ischemia. Rates of glycolysis of exogenous glucose in hearts of control rats were not affected by enalapril treatment. Oxidation of exogenous glucose was not different among groups either before or after ischemia. Function of hearts from untreated aortic-banded rats at the end of reperfusion was significantly less than that of hearts from untreated control rats (23.9 +/- 2.6 v 32.2 +/- 0.7 mmHg x beats per min/1000, respectively, P < 0.05). As with myocardial glucose metabolism function of hearts from aortic-banded rats treated with enalapril was normalized during reperfusion. Thus, pharmacologically induced regression of pressure-overload cardiac hypertrophy normalizes glucose metabolism as well as left ventricular function during reperfusion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources