Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 15;387(6630):278-81.
doi: 10.1038/387278a0.

Synaptic plasticity in a cerebellum-like structure depends on temporal order

Affiliations

Synaptic plasticity in a cerebellum-like structure depends on temporal order

C C Bell et al. Nature. .

Abstract

Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands, results in neural responses to the predictive signals alone that are 'negative images' of the previously paired sensory responses. Adding these 'negative images' to actual sensory inputs minimizes the neural response to predictable sensory features. At the cellular level, sensory input is relayed to the basal region of Purkinje-like cells, whereas predictive signals are relayed by parallel fibres to the apical dendrites of the same cells. The generation of negative images could be explained by plasticity at parallel fibre synapses. We show here that such plasticity exists in the electrosensory lobe of mormyrid electric fish and that it has the necessary properties for such a model: it is reversible, anti-hebbian (excitatory postsynaptic potentials (EPSPs) are depressed after pairing with a postsynaptic spike) and tightly dependent on the sequence of pre- and postsynaptic events, with depression occurring only if the postsynaptic spike follows EPSP onset within 60 ms.

PubMed Disclaimer

Publication types

LinkOut - more resources