Passive potassium ion permeability of Halobacterium halobium cell envelope membranes
- PMID: 9154
- DOI: 10.1016/0005-2736(76)90086-9
Passive potassium ion permeability of Halobacterium halobium cell envelope membranes
Abstract
Cell envelope vesicles, prepared from Halobacterium halobium, were loaded with 3 M KCl, suspended in 3 M NaCl, and the loss of K+ was followed at various temperatures. The Arrhenius plot of the K+-efflux rates shows a break at 30 degrees C, with higher energy of activation above the break. This temperature dependence is consistent with earlier studies of chain motions in liposomes prepared from isolated lipids. The efflux of K+ is more rapid with increasing pH between pH 5 and 7. Since these vesicles do not respire under the experimental conditions it was expected that the K+-efflux data would be related to the passive permeability of the membranes to K+. The apparent K+ permeability at 30 degrees C is 1--2 - 10(-10) cm - s-1. This value corresponds to a 5-h half-life for retained K+ in the envelope vesicles and to a probably much longer half-life in whole cells. The previously observed ability of Halobacterium to retain K+ in the absence of metabolism can thus be explained solely by the permeability characteristics of the membranes.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources